
Last updated: January, 2010

This guide is for anyone who is interested in using the ACMMaC High Performance Computing resources. This
guide contains information about available resources and about how to connect to and use these resources. If there
is additional information which you feel should also be included or if you have questions after reading this guide,
please contact Duane Currie (duane.currie@acadiau.ca).

About This Guide

Contents

• Available Equipment

• Available Software

• Connecting to the Cluster

• Submitting and Managing Jobs

• Trouble-Shooting

Membership and Access

If you are interested in utilizing our resources, and are not currently a member of ACMMaC, please contact Hugh
Chipman (hugh.chipman@acadiau.ca or x1525) or Duane Currie (duane.currie@acadiau.ca or x1773).

Available Equipment

To best describe our available computing equipment, we will begin with a high-level diagram of our computing
systems and resources.

node1

node2

node3

node4

node5

node6

node7

node8

node9

node10

node11

node12

node13

node14
node15

node16

node17

node18

node19

carl

Job Queue

alan

ada

isaac

florence

2TB Disk Array
(/array)

6TB Disk Array
(/array2)

ricky

julian

randy

lahey

corey

trevor

ronald

Control System

B
atch

 Jo
b

 S
y
stem

s

D
at

a
A

n
al

y
si

s
S

y
st

em
s

C
lu

st
er

 A
cc

es
s

 S
y
st

em
s

Overview

Our computing equipment consists of:

• Cluster Access Systems, which users can access and use directly, and from which batch jobs can be submitted
to the Job Queue. Each of these systems possesses 2 Opteron cores and 4GB of RAM.

• Data Analysis Systems, which users can access and use directly, but these do not provide the ability to submit
batch jobs. Each of these systems possesses 8 Opteron cores and 32GB of RAM.

• Batch Job Systems, which are not normally used directly. Instead, one submits batch jobs to the Job Queue,
from which jobs are selected and scheduled to run on the batch systems. Each of these systems possesses 2
Opteron cores and 4GB of RAM.

• A 2TB disk array (called /array) which is shared amongst all the machines. It is the sharing of this array
which allows your home directory and scratch space to be accessible on every machine.

• A 6TB disk array (called /array2) which is only accessible from carl. Its purpose is for storing data which
does not exist elsewhere, or which cannot be re-generated.

• A Job Queue, which is what manages the running of batch jobs on the batch systems. Technically, the job
queue is not actually a piece of equipment; rather, it coordinates how a large amount of our equipment is used.

• A Control System, ronald, which is generally unavailable for use. It maintains certain operations of the clus-
ter which are not visible to end users.

Available Software

Software Packages

R 2.9.1 Statistical Programming Our installation also includes many common librar-
ies, and also parallel programming support

Matlab 2009a Computational programming Includes statistics, optimization, differential equia-
tions, and parallel computing toolkits.

Mathematica 5.1 Symbolic Math

Maple 10 Symbolic Math and Arbitrary Pre-
cision Computation

CPLEX 9 Numerical Programming A CLI-based package for optimization tasks.

OPL Studio Numerical Programming A GUI-based package for optimization tasks.

Scilab Computational programming Uses a language similar to matlab, and is primarily
for numerical computation.

Octave Computational programming A very matlab-like package, and will run many
matlab codes as is.

OpenBUGS Statistical Simulations An implementation of the popular BUGS (Bayesian
inference Using Gibbs Sampling) language.

GNUPlot Simple plotting A simple, common, 2D plotting utility

Compilers

GNU Compiler Collec-
tion

C, C++, Fortran77, and Fortran 95
Compilers and the related utilities

Includes OpenMP support. MPI is supported with
OpenMPI.

FreePascal Compiler Pascal Compiler

Sun Studio 12 C, C++, and Fortran Compiler and
utilities

Includes OpenMP and MPI support.

Libraries

Gnu Scientific Library Scientific Routines for C, C++ and
Fortran.

Library for a variety of scientific computing
tasks—matrix and vector computation, statistical
functions, differentiation, integration, and more

Scalapack Parallel linear algebra

OpenMPI Parallel distributed-memory pro-
gramming

Fftw Fast Fourier Transform routines

Blas, lapack, atlas Linear Algebra routines

Connecting To The Cluster

Operating

System

Login Transfer

Files
Text-Only Graphics

Windows PuTTY* XMing* and
PuTTY*

FileZilla*

Mac OS/X ssh ssh –X FileZilla* or
scp/sftp

Linux/Unix ssh ssh –X FileZilla* or
scp/sftp

* software requires installation, but is available for free.
PuTTY:

http://www.chiark.greenend.org.uk/~sgtatham/putty/
To install, just copy PuTTY.exe to your Desktop

XMing:
http://sourceforge.net/projects/xming/

FileZilla Client:
http://filezilla-project.org/

There are multiple ways to access the cluster, de-
pending on what you wish to accomplish:

Text-Only Login:

Useful when you do not need any graphics dis-
played to you, and everything can be done with
text.

Graphics-Supporting Login:

Similar to the Text-Only login, except that you
can also run commands which use graphics, like
matlab, plotting in R, and GUI-based programs.

Transferring Files:
For when you need to transfer files between your
own machine and the cluster.

Logging In

Transferring Files

To transfer files to and from the cluster using FileZilla:
1. Open FileZilla
2. Select File->Site Manager…
3. Set Host to ‘carl.acadiau.ca’, ServerType to

SFTP, Logontype to ‘Normal’, and provide your
username and password in the appropriate boxes.

4. Click Connect
Now, when connected, the left side represents your own
machine, and the right side represents the cluster. You
can transfer files and folders by dragging and dropping
from left to right (upload) or right to left (download).

Windows:
1. (optional) If you wish to log in and be able to use

graphical programs, you’ll have to run Xming first:
Start->Programs->Xming->Xming

2. Run PuTTY.
3. For hostname, enter the name of your desired Clus-

ter Access System or Data Analysis System
4. (optional) If you wish to log in and be able to use

graphical programs, you’ll have to select on the left,
Connection->SSH->X11, and check the box for
“Enable X11 Forwarding”

5. Click Open
6. Enter your username and password

Mac OS/X or Linux/Unix:
1. Open a terminal (in Mac OS/X, this is under Appli-

cations->Utilities)
2. In the terminal, if you wish to be able to log in and

run graphics applications, run:
 ssh –X <username>@<machinename>.acadiau.ca
or, for text-only mode, run:
 ssh <username>@<machinename>.acadiau.ca
Note: replace <username> with your network user-
name, and <machinename> with the name of the
Cluster Access System or Data Analysis System
you wish to log in to.

3. Enter your password when prompted.

Preparing Cluster Jobs

#!/bin/sh

Run from current directory
#$ -cwd
Use this shell
#$ -S /bin/bash
name that appears in qstat
#$ -N my_job_name
Email a notice when done (e = ended)
#$ -m e
#$ -M email.address@acadiau.ca

Load any local settings.
. /etc/profile

Run my command.
command_name arg1 arg2

Note: If it’s an R program, you might use
R CMD BATCH program.R

#!/bin/sh

Run from current directory

#$ -cwd

Use this shell

#$ -S /bin/bash

name that appears in qstat

#$ -N my_job_name

Email a notice when done (e = ended)

#$ -m e

#$ -M email.address@acadiau.ca

Run ten times with SGE_TASK_ID going

from 1 to 10, stepping by 1

#$ -t 1:10:1

. /etc/profile

model < in.${SGE_TASK_ID} > out.${SGE_TASK_ID}

In order to submit a cluster job, you must first create a “job script”, which tells the cluster how to run your job. A
number of templates are given below for different sorts of jobs. Normally, you should give these script files a
‘.sh’ extension.

Single Job

This is appropriate for general programs that run using
only one processor. This is also how you would submit
parallel matlab jobs—matlab itself will request the re-
sources your program needs.

Array of Single Jobs

This is appropriate for when you have a single proces-
sor job to run many times on different input files. The
example below would run the command ‘model’ 10
times, each on a different input file (in.1, in.2, …) and
save to different output files (out.1, out.2, …).

#!/bin/sh

Run from current directory

#$ -cwd

Use this shell

#$ -S /bin/bash

name that appears in qstat

#$ -N my_job_name

Email a notice when done (e = ended)

#$ -m e

#$ -M email.address@acadiau.ca

Run using 8 processors

#$ -pe mpi 8

. /etc/profile

mpirun command

Note: If you are running a parallel R

program, use:

mpirun –np 1 program.R

Parallel Job using MPI

This is appropriate for when you have a program which
runs in parallel using MPI.

!/bin/sh

Run in the current directory

#$ -cwd

Run using this shell

#$ -S /bin/bash

name that appears in qstat

#$ -N my_math_program

Mail me after its done

#$ -m e

#$ -M email.address@acadiau.ca

Use 5 CPUs (1 Master, 4 slave)

#$ -pe mathematica 5

. /etc/profile

Run the job. $TMPDIR/init.m initializes

information for LaunchSlaves[]

NOTE: Literally use '$TMPDIR/init.m'.

NOTE: in the following command, in.m is

your mathematica program, and the output

from running it will be in out.txt

math -initfile $TMPDIR/init.m < in.m > out.txt

Parallel Mathematica Job

This is appropriate for using Mathematica’s Parallel
Toolbox. Note: In your program, you only need to use
LaunchSlaves[] at the beginning and CloseSlaves[] at
the end. The cluster does the rest of the setup for you.

Managing Jobs

Jobs in the cluster are managed in a queue. When
you submit a cluster job, it is put in the queue. When
it is completed, it is removed from the queue.
To view what jobs are currently in the queue, use the
command ‘qstat’, as shown on the right.

In the example, we see two jobs in the queue. A
status of ‘r’ means they are running, and a status of
‘qw’ would mean ‘queued and waiting’. A job has a
status of ‘qw’ until there are enough resources for it
to run, and then once it is being executed, it gets a
status of ‘r’.

You can also see from the output of qstat all the jobs in the queue, who their owner is, their name (from the #$ –N
line in the job script), the number of cores used (last column), and their Job ID. The Job ID is a value that you may
need for cancelling jobs and troubleshooting problems.

Viewing the Job Queue

Submitting Jobs Cancelling Jobs

To submit a job, you use the command ‘qsub’, and give
it the name of a job script. Example:
 qsub neural_run1.sh

Afterwards, the job will be added to the queue, and
executed when resources are available.

For more information on options for qsub, run:
 man qsub

You may have times when you want to cancel a job—
you might need to change something, you might not
need it anymore, or there might be a bug and it’s run-
ning forever and needs to be stopped.

To cancel a job, run ‘qdel’ and give it the Job ID of the
running job. For example, to cancel the job called
‘neural_2’ above, you would run:
 qdel 10542

TIPS

1. Always give your jobs short unique names.

Later, if you need to cancel or troubleshoot spe-
cific jobs, it is much easier if you can identify
them individually in the output of qstat. qstat
only shows 8 character names, so keep them
short.

2. Keep the number of CPUS used in a parallel

job modest.
In our case, try to use 16 as a maximum. Most
parallel programs perform, per CPU, more effi-
ciently on a smaller number of CPUs. i.e. al-
though a 16-CPU job will end faster than an 8-
CPU jobs, 2 8-CPU jobs, using those same 16
CPUs will complete faster than two 16-CPU jobs.

1. Tell the cluster when jobs are low priority.

If a job is not particularly urgent, you can tell the
cluster to reduce its priority by adding the follow-
ing line to the job script:
 #$ -p –500

2. Tell the cluster about you job’s memory needs.

A job may require very little memory, or a lot. To
help schedule jobs, include this in your job script:
 #$ -l h_vmem=200M
The above assumes your job requires at most
200M. To find out what might be an appropriate
setting, after running your job once, you can run
‘qacct –j JobID | grep h_vmem’, and increase the
value by 20%-50%.

Troubleshooting / FAQ

My job is taking longer than expected. Can I tell if

something’s wrong and fix it?

I’m having problems logging in. What’s wrong?

There are three possible situations:
1. The job is running infinitely and incorrectly, but

doing nothing.
2. The job is running infinitely and incorrectly, us-

ing resources.
3. The job is running fine, but taking longer than

you thought.

Situation #1 can usually be diagnosed. If you run
‘qstat –F’, you will get a listing, machine by machine,
of what jobs are running per machine. If you examine
the entries for machines for on which your job is run-
ning, and the load value per process on the machine is
less than (2/3), or especially if near zero, it is likely
the case. If it is, you can cancel the job, attempt to
determine and fix the cause of the problem, and try
again.

Situation #2 is sometimes almost impossible to distin-
guish from situation #3. The only way to tell is by the
other side effects of your job. If your job is supposed
to be regularly producing output, you may be able to
check the output to identify if the output is valid, and
you can use this to determine if the job is running cor-
rectly. If there are no such side effects, you might
want to build these into your job (such as periodically
outputting diagnostic data), and run your job again.

If you can diagnose that situation #2 has occurred, you
should cancel the job, and re-submit.

Try again, and make sure you’re using your current net-
work password. If you’ve changed your network pass-
word, this will affect the cluster as well.

Next, try logging in to carl.acadiau.ca (make sue
the .acadiau.ca is there).

Otherwise, make sure you can log into other Acadia
network programs (e.g. Acorn, email). If those fail, it’s
likely there is some issue with your network account,
and you should contact the Service Desk, in person, or at
585-4357.

If none of these resolve, or help resolve the issue, please
contact Duane Currie (duane.currie@acadiau.ca)

My job is queued and waiting, but there should be

enough processors able to run it. What can I do?

Currently, we have 36 processors available. First, make
sure that the number of processors left is enough to run
your job (subtract the number qstat reports as used by
running jobs from 36 to determine the number free).

If there should be enough free to run your job, please
contact Duane Currie (duane.currie@acadiau.ca), as this
can indicate a known minor system problem.

Where should I put the data for my job?

If your job generates much data at all (greater than 10M
is a good baseline), you should store the generated data
somewhere in your directory either in /array/data1/ or /
array/data2/. These are directories for scratch space, i.e.
data which is not backed up, but can be re-generated or
re-downloaded if necessary.

If the data is a data set which can not easily be re-
generated/re-downloaded, you should store the data in a
directory on /array2. If so, please contact Duane Currie
(duane.currie@acadiau.ca) to make sure a suitable loca-
tion in that directory is created for you. This area is
periodically (but not daily) duplicated to a second disk
array in another building to avoid potential loss.

Otherwise, for small volumes of data, use your home
directory.

Graphics (or matlab) from the cluster will not dis-

play on my computer. What might be wrong?

First, make sure you’re on campus. Off-campus con-
nections are too slow to display the graphics screens
from the cluster reasonably. Actually, other local uni-
versities should be okay, but home network connec-
tions will be too slow.

Then, ensure you’ve connected to the cluster in such a
way as to show graphical applications. Instructions
are provided earlier in this document.

If neither of the above work, please contact Duane
Currie (duane.currie@acadiau.ca), and provide details
such as time, location, cluster machine name, and
which operating system you are using.

